edryd.org

some of my neat stuff
git clone git://edryd.org/edryd.org
Log | Files | Refs | LICENSE

deriv-proofs.md (2070B)


      1 ---
      2 title: "Proof of Derivative Properties"
      3 date: 2017-10-04
      4 tags: math calculus proof notes
      5 categories: math
      6 math: true
      7 ---
      8 
      9 ## derivation of the quotient rule
     10 
     11 The quotient rule is used to take the derivative of a function with divided
     12 expressions:
     13 
     14 $$
     15 \left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v^2}
     16 $$
     17 
     18 It is possible to prove this rule by utilizing the definition of the
     19 derivative; however, this is not nearly as elegant as the following simple
     20 proofs which use other derivative properties instead.
     21 
     22 ### product rule
     23 
     24 $$\begin{align}
     25  y & = \frac{u}{v} \\
     26    & = uv^{-1} \\
     27 y' & = v^{-1}u' + u(-v^{-2}v') \\
     28    & = \frac{u'}{v} - \frac{uv'}{v^2} \\
     29    & = \frac{v}{v}\cdot\frac{u'}{v} - \frac{uv'}{v^2} \\
     30    & = \frac{vu'}{v^2} - \frac{uv'}{v^2} \\
     31    & = \frac{vu' - uv'}{v^2} \\
     32 \end{align}$$
     33 
     34 ### logarithm
     35 
     36 $$\begin{align}
     37             y & = \frac{u}{v} \\
     38 \mathrm{ln} y & = \mathrm{ln} \frac{u}{v} \\
     39               & = \mathrm{ln} u - \mathrm{ln} v \\
     40  \frac{y'}{y} & = \frac{u'}{u} - \frac{v'}{v} \\
     41               & = \frac{v}{v}\frac{u'}{u} - \frac{u}{u}\frac{v'}{v} \\
     42               & = \frac{vu' - uv'}{uv} \\
     43            y' & = y\frac{vu' - uv'}{uv} \\
     44               & = \frac{u}{v}\frac{vu' - uv'}{uv} \\
     45               & = \frac{vu' - uv'}{v^2} \\
     46 \end{align}$$
     47 
     48 ## logarithmic proofs
     49 
     50 As well as being used in the proof of the quotient rule, logarithms can also be
     51 used to prove a couple of other derivative rules.
     52 
     53 ### power rule
     54 
     55 $$\begin{align}
     56             y & = x^n \\
     57 \mathrm{ln} y & = \mathrm{ln} x^n \\
     58               & = n \mathrm{ln} x \\
     59  \frac{y'}{y} & = n \frac{1}{x} \\
     60            y' & = yn \frac{1}{x} \\
     61               & = n x^n x^{-1} \\
     62               & = nx^{n-1}\\
     63 \end{align}$$
     64 
     65 ### product rule
     66 
     67 $$\begin{align}
     68             y & = uv \\
     69 \mathrm{ln} y & = \mathrm{ln} uv \\
     70               & = \mathrm{ln} u + \mathrm{ln} v \\
     71  \frac{y'}{y} & = \frac{u'}{u} + \frac{v'}{v} \\
     72            y' & = y \frac{u'}{u} + \frac{v'}{v} \\
     73               & = uv \left(\frac{u'}{u} + \frac{v'}{v}\right) \\
     74               & = vu' + uv' \\
     75 \end{align}$$