edryd.org

some of my neat stuff
git clone git://edryd.org/edryd.org
Log | Files | Refs | LICENSE

multivar-calc.md (3452B)


      1 ---
      2 title: "Multivariable Calculus Cheatsheet"
      3 date: 2017-11-14
      4 tags: math calculus cheatsheet
      5 categories: math
      6 math: true
      7 ---
      8 
      9 # trig identities
     10 
     11 $$\sin^2 \theta + \cos^2 \theta = 1$$
     12 
     13 $$1+ \tan^2 \theta = \sec^2 \theta$$
     14 
     15 $$1+ \cot^2 \theta = \csc^2 \theta$$
     16 
     17 $$\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$$
     18 
     19 $$\cos(a \pm b) = \cos(a)\cos(b) \pm \sin(a)\sin(b)$$
     20 
     21 $$\sin(-\theta) = -\sin \theta$$
     22 
     23 $$\cos(-\theta) = \cos \theta$$
     24 
     25 $$\tan(-\theta) = -\tan \theta$$
     26 
     27 # derivatives
     28 
     29 $$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
     30 
     31 $$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\frac{dy}{dx}}{\frac{dx}{dt}}$$
     32 
     33 $$\frac{d}{d\theta}\sin \theta = \cos \theta$$
     34 
     35 $$\frac{d}{d\theta}\cos \theta = -\sin \theta$$
     36 
     37 $$\frac{d}{d\theta}\tan \theta = \sec^2 \theta$$
     38 
     39 $$\frac{d}{d\theta}\cot \theta = -\csc^2 \theta$$
     40 
     41 $$\frac{d}{d\theta}\sec \theta = \sec \theta \tan \theta$$
     42 
     43 $$\frac{d}{d\theta}\csc \theta = -\csc \theta \cot \theta$$
     44 
     45 $$\frac{d}{dx}\sin^{-1} x = \frac1{\sqrt{1-x^2}}, x \in [-1,1]$$
     46 
     47 $$\frac{d}{dx}\cos^{-1} x = \frac{-1}{\sqrt{1-x^2}}, x \in [-1,1]$$
     48 
     49 $$\frac{d}{dx}\tan^{-1} x = \frac1{1+x^2}, x \in [\frac{-\pi}2, \frac{\pi}2]$$
     50 
     51 $$\frac{d}{dx}\sec^{-1} x = \frac1{|x|\sqrt{x^2-1}}, |x| > 1$$
     52 
     53 # integrals
     54 
     55 $$\int{udv} = uv - \int{vdu}$$
     56 
     57 $$\int_a^b{f(x)dx} = \lim_{n \to \infty} \sum_{i=1}^n f(x_i)\Delta x$$
     58 
     59 $$\iint_R{f(x,y)dA} = \lim_{\substack{n \to \infty \\ m \to \infty}} \sum_{i=1}^n \sum_{j=1}^m f(x_i,y_i)\Delta x\Delta y$$
     60 
     61 # vectors
     62 
     63 $$\vec a \cdot \vec b = |\vec a||\vec b| \cos \theta$$
     64 
     65 $$|\vec a \times \vec b| = |\vec a||\vec b| \sin \theta$$
     66 
     67 $$\mathrm{proj}_{\vec b} \vec a = \frac{\vec a \cdot \vec b}{|\vec b|}\frac{\vec b}{|\vec b|}$$
     68 
     69 $$\cos \theta = \frac{n_1n_2}{|n_1||n_2|}$$
     70 
     71 $$D = \frac{|d_1-d_2|}{\sqrt{a^2+b^2+c^2}} = \frac{|ax_1+by_1+cz_1+d|}{\sqrt{a^2+b^2+c^2}}$$
     72 
     73 $$A = \int_\alpha^\beta g(t)f'(t)dt$$
     74 
     75 $$L = \int_\alpha^\beta\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}$$
     76 
     77 $$a_T(t) = \frac{r'(t) \cdot r'(t)'}{|r'(t)|}$$
     78 
     79 $$a_N(t) = \frac{|r'(t) \times r'(t)'|}{|r'(t)|}$$
     80 
     81 # surfaces
     82 
     83 | name                    | equation                                                   |
     84 | ----------------------- | ---------------------------------------------------------- |
     85 | ellipsoid               | $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$  |
     86 | elliptical paraboloid   | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$          |
     87 | hyperbolic paraboloid   | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$          |
     88 | cone                    | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$      |
     89 | hyperboloid of 1 sheet  | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$  |
     90 | hyperboloid of 2 sheets | $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ |
     91 
     92 # polar coordinates
     93 
     94 $$x = r \cos \theta$$
     95 
     96 $$y = r \sin \theta$$
     97 
     98 $$r = \sqrt{x^2+y^2}$$
     99 
    100 $$\tan \theta = \frac{y}{x}$$
    101 
    102 # curvature
    103 
    104 $$\vec T(t) = \frac{\vec r'{t}}{|r'(t)|}$$
    105 
    106 $$\vec N(t) = \frac{\vec T'{t}}{|T'(t)|}$$
    107 
    108 $$\vec B(t) = \vec T(t) \times \vec N(t)\$$
    109 
    110 $$\kappa(t) = \left| \frac{d\vec T}{ds} \right| = \frac{|\vec T(t)|}{|\vec r(t)|} = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3} = \frac{|f''(x)|}{(1+f'(x)^2)^{\frac{3}{2}}}$$
    111 
    112 # partial derivatives
    113 
    114 $$z - z_0 = \frac{\partial z}{\partial x}(x-a) + \frac{\partial z}{\partial y}(y-b)$$
    115 
    116 $$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$
    117 
    118 $$D(a,b) = f_{xx}(a,b)f_{yy}(a,b)-f_{xy}(a,b)^2$$