edryd.org

Unnamed repository; edit this file 'description' to name the repository.
git clone git://edryd.org/edryd.org
Log | Files | Refs | LICENSE

commit 7a1747568e321dfe10062c2203012e05a5558fdd
parent 58aeb8993e627cbcfb494e7a1bd7b9d432010aed
Author: Ed van Bruggen <ed@edryd.org>
Date:   Wed,  1 Nov 2017 19:43:00 -0700

Rename physics notes as a cheatsheet

Diffstat:
_posts/2017-06-02-gen-phys-cs.md | 261+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
_posts/2017-06-02-gen-phys-notes.md | 261-------------------------------------------------------------------------------
2 files changed, 261 insertions(+), 261 deletions(-)

diff --git a/_posts/2017-06-02-gen-phys-cs.md b/_posts/2017-06-02-gen-phys-cs.md @@ -0,0 +1,261 @@ +--- +title: "general physics cheatsheet" +tags: phys cheatsheet +categories: phys +math: true +--- + +$ \newcommand{\e}[1]{ \times 10^{#1}} $ + +## constants + +$m_e = 9.11\e{-31} kg = .511 \frac{Mev}{c^2} = 5.4858\e{-4} u$ + +$m_p = 1.673\e{-27} kg = 938 \frac{Mev}{c^2} = 1.007276 u$ + +$m_n = 1.675\e{-27} kg = 940 \frac{Mev}{c^2} = 1.008665 u$ + +$u = 1.6605\e{-27} kg = 931.5 \frac{Mev}{c^2}$ + +$e = 1.6012\e{-19} C$ + +$\mu_0 = 4\pi\e{-7}$ + +$k = 8.988\e9 \frac{Nm^2}{C^2}$ + +$\varepsilon_0 = 8.854\e{-12} \frac{F}{m}$ + +$c = 2.998\e8 \frac{m}{s}$ + +$h = 6.626\e{-34} Js = 4.136\e{-15} eVs$ + +$T = 1.6\e{-19}$ + +$E_1 = -13.6 eV$ + +$r_0 = 1.2\e{-15} m$ + +## equations + +$\varepsilon_0 = \frac1{4\pi k} = \frac1{\mu_0c^2}$ + +### electric fields + +$E = \frac{\sigma}{\varepsilon_0}$ + +$\Phi_E = \vec E \cdot \vec A = EA\cos \theta = \frac{q_A}{\varepsilon_0}$ + +$\vec F_E = \frac{kqQ}{r^2} = Q \vec E$ + +$W = \vec F \Delta x \cos \theta$ + +$\Delta U = -\Delta E_k = -W$ + +$\Delta V = \frac{\Delta U}{q_0} = -\vec E \Delta x$ + +$V = \frac{kQ}r$ + +### capacitance + +$V = Ed$ + +$Q = \sigma A$ + +$C = \frac{Q}V = kC_0$ + +$U = \frac{CV^2}2$ + +### electric currents + +$V = IR$ + +$P = IV$ + +$I = \frac{\Delta Q}{\Delta t}$ + +$I = v_DAnq$ + +$I_{rms} = \frac{I_0}{\sqrt2}$ + +$R = \frac{\rho \ell}A$ + +### dc circuits + +$\tau = RC$ + +$V_0 = \frac{Q_0}C$ + +$I_0 = \frac{V_0}R$ + +$Q_{max} = CV_B$ + +$\sum I_{in} = \sum I_{out}$ + +$\sum V_{loop} = 0$ + +#### series + +$\sum Q = Q_1 = Q_2 = \cdots = Q_n$ + +$\frac1{\sum C} = \frac1{C_1} + \frac1{C_2} + \cdots + \frac1{C_n}$ + +$\sum U = \frac{Q_1^2}{2C_1} + \frac{Q_2^2}{2C_2} + \cdots + \frac{Q_n^2}{2C_n}$ + +$\sum R = R_1 + R_2 + \cdots + R_n$ + +#### parallel + +$\sum V = V_1 = V_2 = \cdots + R_n$ + +$\sum C = C_1 + C_2 + \cdots + C_n$ + +$\sum U = \frac{Q_1}{2C_1} + \frac{Q_2}{2C_2} + \cdots + \frac{Q_n}{2C_n}$ + +$\frac1{\sum R} = \frac1{R_1} + \frac1{R_2} + \cdots + \frac1{R_n}$ + +### rc circuits + +$i = I_0 e^{\frac{-t}\tau}$ + +$V_R = I_0 R e^{\frac{-t}\tau}$ + +$U = \frac{q^2}{2C}$ + +$P = i^2 R$ + +#### charging + +$q = Q_{max} \left(1 - e^{\frac{-t}\tau}\right)$ + +$V_C = V_B \left(1 - e^{\frac{-t}\tau}\right)$ + +#### discharging + +$q = Q_{max} e^{\frac{-t}\tau}$ + +$V_C = V_B e^{\frac{-t}\tau}$ + +### magnetism + +$\vec F_B = q \vec v \cdot \vec B = qvB\sin\theta$ + +$F_B = \frac{mv^2}{R} = qvB$ + +$\frac{F_M}{\ell} = BI\sin\theta$ + +$B = \frac{\mu_0 I}{2 \pi r} = \frac{\mu_0 I N}{\ell}$ + +$\frac{F_{21}}{\Delta \ell} = \frac{\mu_0 I_1 I_2}{2 \pi d}$ + +### electromagnetic induction + +$\mathcal{E} = \left\|\frac{\Delta \Phi_B}{\Delta t}\right\| = -vBL = NBAq$ + +$I_{avg} = \frac{\left\|\mathcal{E}\right\|}R$ + +$\Delta \Phi_B = B \Delta A = \Delta B A$ + +$U = \frac{LI^2}2 = \frac{B^2V_{ol}}{2\mu_0}= \frac{B^2\pi r^2\ell}{2\mu_0}$ + +$\tau = \vec \mu \cdot \vec B$ + +$P = \vec F \cdot \vec v = \frac{\left(B \ell v\right)^2}R$ + +$\frac{N_P}{N_S} = \frac{V_P}{V_S} = \frac{I_S}{V_P}$ + +### electromagnetic waves + +$v = f\lambda$ + +$\vec{S} = \frac{EB}{2\mu_0} = \frac{P}A$ + +$E = \frac{I}{A\mathcal{E}_0} = cB$ + +$\sum U = U_E + U_B = \mathcal{E}_0E^2$ + +$U_E = \frac{\mathcal{E}_oE^2}2$ + +$U_B = \frac{B^2}{2\mu_0}$ + +$S = \frac{CB^2}{\mu_0} = \frac{\Delta U}{A\Delta t}$ + +### optics + +$\frac1{d_0} + \frac1{d_i} = \frac1{f} = \frac2{r}$ + +$\frac1{f} = (n-1)\left(\frac1{R_1}-\frac1{R_2}\right)$ + +$M = \frac{-d_i}{d_0} = \frac{h_i}{h_0}$ + +$n_1\sin\theta_1 = n_2\sin\theta_2$ + +$\lambda_m = \frac{\lambda_v}n$ + +### special theory of relativity + +$\Delta t = \gamma \Delta t_0$ + +$L = \frac{L_0}{\gamma}$ + +$\gamma = \frac1{\sqrt{1-\frac{v^2}{c^2}}}$ + +$v = c \sqrt{1-\frac1{\gamma^2}}$ + +### quantum mechanics + +$\hbar = \frac{h}{2\pi}$ + +$\Delta x \Delta p \gtrsim \hbar$ + +$\Delta E \Delta t \gtrsim \hbar$ + +$E_n = \frac{Z^2}{n^2}(-13.6eV)$ + +### nuclear physics + +$r = r_0 A^{1/3}$ + +$N = N_0e^{-\lambda t}$ + +$A = \lambda N$ + +## info + +### prefixes + +| name | prefix | power | +| ---- | ------ | ---------- | +| exa | E | $10^{18}$ | +| peta | P | $10^{15}$ | +| tera | T | $10^{12}$ | +| giga | G | $10^9$ | +| mega | M | $10^6$ | +| kilo | k | $10^3$ | +| hecto | h | $10^2$ | +| deca | da | $10^1$ | +| - | - | - | +| deci | d | $10^{-1}$ | +| centi | c | $10^{-2}$ | +| milli | m | $10^{-3}$ | +| mirco | μ | $10^{-6}$ | +| nano | n | $10^{-9}$ | +| pico | p | $10^{-12}$ | +| femto | f | $10^{-15}$ | +| atto | a | $10^{-18}$ | + +### right hand rules + +| hand | vector | +| ------- | --------------- | +| fingers | $\vec v$ or $I$ | +| palm | $\vec B$ | +| thumb | $\vec F$ | + +### quantum numbers + +| (n, ℓ, m, s) | +| --------------- | +| n = 1, 2, 3 … ∞ | +| ℓ = 0 … n-1 | +| m = -ℓ … +ℓ | +| s = ±½ | diff --git a/_posts/2017-06-02-gen-phys-notes.md b/_posts/2017-06-02-gen-phys-notes.md @@ -1,261 +0,0 @@ ---- -title: "general physics notes" -tags: phys notes -categories: phys -math: true ---- - -$ \newcommand{\e}[1]{ \times 10^{#1}} $ - -## constants - -$m_e = 9.11\e{-31} kg = .511 \frac{Mev}{c^2} = 5.4858\e{-4} u$ - -$m_p = 1.673\e{-27} kg = 938 \frac{Mev}{c^2} = 1.007276 u$ - -$m_n = 1.675\e{-27} kg = 940 \frac{Mev}{c^2} = 1.008665 u$ - -$u = 1.6605\e{-27} kg = 931.5 \frac{Mev}{c^2}$ - -$e = 1.6012\e{-19} C$ - -$\mu_0 = 4\pi\e{-7}$ - -$k = 8.988\e9 \frac{Nm^2}{C^2}$ - -$\varepsilon_0 = 8.854\e{-12} \frac{F}{m}$ - -$c = 2.998\e8 \frac{m}{s}$ - -$h = 6.626\e{-34} Js = 4.136\e{-15} eVs$ - -$T = 1.6\e{-19}$ - -$E_1 = -13.6 eV$ - -$r_0 = 1.2\e{-15} m$ - -## equations - -$\varepsilon_0 = \frac1{4\pi k} = \frac1{\mu_0c^2}$ - -### electric fields - -$E = \frac{\sigma}{\varepsilon_0}$ - -$\Phi_E = \vec E \cdot \vec A = EA\cos \theta = \frac{q_A}{\varepsilon_0}$ - -$\vec F_E = \frac{kqQ}{r^2} = Q \vec E$ - -$W = \vec F \Delta x \cos \theta$ - -$\Delta U = -\Delta E_k = -W$ - -$\Delta V = \frac{\Delta U}{q_0} = -\vec E \Delta x$ - -$V = \frac{kQ}r$ - -### capacitance - -$V = Ed$ - -$Q = \sigma A$ - -$C = \frac{Q}V = kC_0$ - -$U = \frac{CV^2}2$ - -### electric currents - -$V = IR$ - -$P = IV$ - -$I = \frac{\Delta Q}{\Delta t}$ - -$I = v_DAnq$ - -$I_{rms} = \frac{I_0}{\sqrt2}$ - -$R = \frac{\rho \ell}A$ - -### dc circuits - -$\tau = RC$ - -$V_0 = \frac{Q_0}C$ - -$I_0 = \frac{V_0}R$ - -$Q_{max} = CV_B$ - -$\sum I_{in} = \sum I_{out}$ - -$\sum V_{loop} = 0$ - -#### series - -$\sum Q = Q_1 = Q_2 = \cdots = Q_n$ - -$\frac1{\sum C} = \frac1{C_1} + \frac1{C_2} + \cdots + \frac1{C_n}$ - -$\sum U = \frac{Q_1^2}{2C_1} + \frac{Q_2^2}{2C_2} + \cdots + \frac{Q_n^2}{2C_n}$ - -$\sum R = R_1 + R_2 + \cdots + R_n$ - -#### parallel - -$\sum V = V_1 = V_2 = \cdots + R_n$ - -$\sum C = C_1 + C_2 + \cdots + C_n$ - -$\sum U = \frac{Q_1}{2C_1} + \frac{Q_2}{2C_2} + \cdots + \frac{Q_n}{2C_n}$ - -$\frac1{\sum R} = \frac1{R_1} + \frac1{R_2} + \cdots + \frac1{R_n}$ - -### rc circuits - -$i = I_0 e^{\frac{-t}\tau}$ - -$V_R = I_0 R e^{\frac{-t}\tau}$ - -$U = \frac{q^2}{2C}$ - -$P = i^2 R$ - -#### charging - -$q = Q_{max} \left(1 - e^{\frac{-t}\tau}\right)$ - -$V_C = V_B \left(1 - e^{\frac{-t}\tau}\right)$ - -#### discharging - -$q = Q_{max} e^{\frac{-t}\tau}$ - -$V_C = V_B e^{\frac{-t}\tau}$ - -### magnetism - -$\vec F_B = q \vec v \cdot \vec B = qvB\sin\theta$ - -$F_B = \frac{mv^2}{R} = qvB$ - -$\frac{F_M}{\ell} = BI\sin\theta$ - -$B = \frac{\mu_0 I}{2 \pi r} = \frac{\mu_0 I N}{\ell}$ - -$\frac{F_{21}}{\Delta \ell} = \frac{\mu_0 I_1 I_2}{2 \pi d}$ - -### electromagnetic induction - -$\mathcal{E} = \left\|\frac{\Delta \Phi_B}{\Delta t}\right\| = -vBL = NBAq$ - -$I_{avg} = \frac{\left\|\mathcal{E}\right\|}R$ - -$\Delta \Phi_B = B \Delta A = \Delta B A$ - -$U = \frac{LI^2}2 = \frac{B^2V_{ol}}{2\mu_0}= \frac{B^2\pi r^2\ell}{2\mu_0}$ - -$\tau = \vec \mu \cdot \vec B$ - -$P = \vec F \cdot \vec v = \frac{\left(B \ell v\right)^2}R$ - -$\frac{N_P}{N_S} = \frac{V_P}{V_S} = \frac{I_S}{V_P}$ - -### electromagnetic waves - -$v = f\lambda$ - -$\vec{S} = \frac{EB}{2\mu_0} = \frac{P}A$ - -$E = \frac{I}{A\mathcal{E}_0} = cB$ - -$\sum U = U_E + U_B = \mathcal{E}_0E^2$ - -$U_E = \frac{\mathcal{E}_oE^2}2$ - -$U_B = \frac{B^2}{2\mu_0}$ - -$S = \frac{CB^2}{\mu_0} = \frac{\Delta U}{A\Delta t}$ - -### optics - -$\frac1{d_0} + \frac1{d_i} = \frac1{f} = \frac2{r}$ - -$\frac1{f} = (n-1)\left(\frac1{R_1}-\frac1{R_2}\right)$ - -$M = \frac{-d_i}{d_0} = \frac{h_i}{h_0}$ - -$n_1\sin\theta_1 = n_2\sin\theta_2$ - -$\lambda_m = \frac{\lambda_v}n$ - -### special theory of relativity - -$\Delta t = \gamma \Delta t_0$ - -$L = \frac{L_0}{\gamma}$ - -$\gamma = \frac1{\sqrt{1-\frac{v^2}{c^2}}}$ - -$v = c \sqrt{1-\frac1{\gamma^2}}$ - -### quantum mechanics - -$\hbar = \frac{h}{2\pi}$ - -$\Delta x \Delta p \gtrsim \hbar$ - -$\Delta E \Delta t \gtrsim \hbar$ - -$E_n = \frac{Z^2}{n^2}(-13.6eV)$ - -### nuclear physics - -$r = r_0 A^{1/3}$ - -$N = N_0e^{-\lambda t}$ - -$A = \lambda N$ - -## info - -### prefixes - -| name | prefix | power | -| ---- | ------ | ---------- | -| exa | E | $10^{18}$ | -| peta | P | $10^{15}$ | -| tera | T | $10^{12}$ | -| giga | G | $10^9$ | -| mega | M | $10^6$ | -| kilo | k | $10^3$ | -| hecto | h | $10^2$ | -| deca | da | $10^1$ | -| - | - | - | -| deci | d | $10^{-1}$ | -| centi | c | $10^{-2}$ | -| milli | m | $10^{-3}$ | -| mirco | μ | $10^{-6}$ | -| nano | n | $10^{-9}$ | -| pico | p | $10^{-12}$ | -| femto | f | $10^{-15}$ | -| atto | a | $10^{-18}$ | - -### right hand rules - -| hand | vector | -| ------- | --------------- | -| fingers | $\vec v$ or $I$ | -| palm | $\vec B$ | -| thumb | $\vec F$ | - -### quantum numbers - -| (n, ℓ, m, s) | -| --------------- | -| n = 1, 2, 3 … ∞ | -| ℓ = 0 … n-1 | -| m = -ℓ … +ℓ | -| s = ±½ |